
PerLa
Focusing on motes

Riccardo Pinciroli 795582
Matteo Simoni 796384

PerLa
PerLa is a declarative language and middleware for pervasive systems. Its
target is to allow users to query a wireless sensor network, using a full
declarative SQL-like high level language hiding the complexity of handling
different technologies through a middleware platform.

At a high level of abstraction, the architecture of the system is divided in three
main components:
1. Motes with several sensors on board;
2. A channel that decouples communication between motes and server;
3. Server that makes requests to the WSN and that gathers responses.

Motes in PerLa
Motes are the lowest level in the architecture of PerLa.

They are one of the possible sources of information in PerLa; other ones
can be web services and streams.

They have to sense data, transmit and receive packets via radio. One of them,
moreover, will be the sink of the networks being physically linked to a PC (that
act as channel of the infrastructure) via a serial port.

Besides sensors, they have timers used in order to manage periodical
actions.

TinyOS
TinyOS is an open source operating system (more a library) designed for
low-power wireless devices, such as those used in sensor networks.

It provides a software abstraction of the underlaying hardware by
components that are used for sensing data, sending packet, managing the
connection and more.

It is programmed in nesC, an extension of C language aimed at networked
embedded systems.

File Produced
● PerLaSensorAppC.nc: the top-level configuration file. It wires together the

component that are used in the application.

● PerLaSensorC.nc: the implementation of commands/events provided/used by the
application.

● PerLaMessage.h: it specifies the structure that a message must assume in the
PerLa system. It also contains some constants.

● PerLaSetting.h: This file contains some structures, used in the application, that
producer can modify as he prefers. This will allow him not to touch the code of the
application so deeply by accessing only this file.

Moreover, for testing purposes, we have implemented two fake sensors (temperature
and humidity) that produce random values and the Java classes that abstract the
channel that receives messages trought the serial communication.

PerLa Protocol (1)
We defined a protocol in order to set the rules in the communication between motes
and the channel.

A PerLa message is composed by an header that contains general information such:

● id; (of sending motes)
● timestamp;
● type; (request/response and of which type)
● numPckt and numPcktToReceive. (used if the packet has to be splitted)

and by a payload that is a sequence of byte which structure is defined by an XML
descriptor sent to the channel (that must interpretate the bytes) when nodes join the
wireless sensor network.

PerLa Protocol (2)
Because it is not allowed to access directly the header of a TinyOS Message
and modify it in order to add the above mentionated fields, we create our own
PerLa Message that is then incapsulated in a TinyOS Message.

By doing this, we have a total control of our message (both the header and the
payload part) and we lay on a standard.

Implemented Features
At the state of art, a mote with installed our TinyOS application is able to perform several
operations. In particular it can:

● Sense periodically temperature and/or humidity with a specified time period
(in seconds).

● Sense temperature and/or humidity one-shot.

● Sense temperature and/or humidity by event. (Until now the events supported
are “temperature/humidity greater than”)

● Send a packet with a sensed value or the XML descriptor to the sink (and split it in
more packet if the information that has to be sent is too big)

● The sink is able to route the packet that receives from other motes to the channel
(e.g. a PC) via serial communication.

Open Problems
PerLa is an ongoing project. The part about motes has also to be improved
in order to make it more powerful.

Some open problems that we focused are:

● Extend the event-based sampling condition (maybe in a dynamic way);

● Routing Protocols;

● Battery Management;

● Packet Resending Management.

Q&A

QUESTIONS?

THANKS FOR YOUR ATTENTION

